推荐搜索:
C-NKG
IL10
Apoe
VEGFA
Trp53
ob/ob
Rag1
C57BL/6NCya-Ghrem1/Cya 基因敲除小鼠
复苏/繁育服务
产品名称:
Ghr-KO
产品编号:
S-KO-02233
品系背景:
C57BL/6NCya
小鼠资源库
* 使用本品系发表的文献需注明:Ghr-KO mice (Strain S-KO-02233) were purchased from Cyagen.
交付类型
周龄
性别
基因型
数量
基本信息
品系名称
C57BL/6NCya-Ghrem1/Cya
品系编号
KOCMP-14600-Ghr-B6N-VA
产品编号
S-KO-02233
基因名
Ghr
品系背景
C57BL/6NCya
基因别称
GHBP; GHR/BP
NCBI号
修饰方式
全身性基因敲除
品系说明
该品系是基于策略设计时的数据库信息制作而成,建议您在购买前查询最新的数据库和相关文献,以获取最准确的表型信息。
小鼠表型
MGI:95708 Homozygotes for targeted null mutations exhibit retarded postnatal growth, proportionate dwarfism, decreased plasma insulin-like growth factor I levels, small pituitaries, reduced fecundity in females, and extended life-span.
质控标准
精子检测
① 冷冻前验证精子活力观察
② 冷冻验证每批次进行复苏验证
品系状态
活体
环境标准
SPF
供应地区
中国
品系详情
Ghr位于小鼠的15号染色体,采用基因编辑技术,通过应用高通量电转受精卵方式,获得Ghr基因敲除小鼠,性成熟后取精子冻存。
赛业生物(Cyagen)构建了名为Ghr-KO的基因敲除小鼠模型。该模型采用基因编辑技术构建,旨在研究小鼠生长激素受体(Ghr)基因的功能。Ghr基因位于小鼠15号染色体上,由11个外显子组成,其中ATG起始密码子在2号外显子,TAG终止密码子在11号外显子。敲除区域位于4号外显子至5号外显子,包含154个碱基对的编码序列。敲除该区域会导致小鼠生长激素受体(Ghr)基因功能的丧失。 Ghr-KO小鼠模型的构建过程包括将核糖核蛋白(RNP)和靶向载体共同注入受精卵。随后,对出生的小鼠进行PCR和测序分析进行基因型鉴定。携带敲除等位基因的小鼠表现出生长发育迟缓、比例性侏儒症、血浆胰岛素样生长因子I水平降低、垂体体积减小、雌性繁殖力下降以及寿命延长等特征。
发表文献
* 使用本品系发表的文献需注明:Ghr-KO mice (Strain S-KO-02233) were purchased from Cyagen.
基因研究概述
Ghr,即生长激素受体基因,编码生长激素受体(GHR),是生长激素(GH)信号通路中的关键组成部分。GHR是一种单次跨膜受体,属于细胞因子受体家族。GH与GHR结合后,会激活下游的信号通路,如JAK-STAT通路,进而影响细胞的生长、代谢和分化等生物学过程。GHR的突变或功能障碍会导致生长激素不敏感症(GHI)和多种疾病,如Laron侏儒症、糖尿病、癌症和认知衰退等[1,3,4,5,6,7,8,9,10]。
在成年小鼠中,GHR的缺失会影响肝脏中基因的表达,导致氧化损伤减少,胰岛素敏感性提高,癌症抵抗力增强,甚至延长寿命[1]。此外,GHR的缺失还会影响肝脏中的脂质代谢和外源性代谢途径[1]。这些发现提示,GHR的缺失可能通过调节肝脏中的基因表达和代谢途径,从而影响小鼠的健康和寿命。
GHR基因在多种动物中存在,包括人类、小鼠、牛、羊和山羊等。在牛和羊中,GHR基因的多态性已被证明与生长性状有关[2,5,7]。例如,在安纳托利亚黑牛中,Pit-1和GHR基因的多态性与生长性状有关[2]。在山羊中,GHR基因的插入/缺失变异已被证明与生长性状有关[5,7]。这些发现表明,GHR基因的多态性可能被用作动物育种和选择的有用标记。
GHR基因的转录异质性也可能导致临床表型的差异。例如,在GHR假外显子(6Ψ)突变的患者中,6Ψ-GHR和野生型GHR(WT-GHR)mRNA转录本的比例与身高SDS呈负相关[3]。此外,GHR基因还可能存在天然反义转录本,该转录本可以调节GHR mRNA的表达[10]。
总之,Ghr基因在生长激素信号通路中发挥重要作用,其突变或功能障碍会导致多种疾病。GHR基因的多态性已被证明与生长性状有关,可能被用作动物育种和选择的有用标记。此外,GHR基因的转录异质性和天然反义转录本也可能影响GHR的表达和功能,从而导致临床表型的差异。
参考文献:
1. Duran-Ortiz, Silvana, Young, Jonathan A, List, Edward O, Berryman, Darlene E, Kopchick, John J. 2023. GHR disruption in mature adult mice alters xenobiotic metabolism gene expression in the liver. In Pituitary, 26, 437-450. doi:10.1007/s11102-023-01331-6. https://pubmed.ncbi.nlm.nih.gov/37353704/
2. Sakar, Çağrı Melikşah, Zülkadir, Uğur. 2021. Determination of the relationship between Anatolian black cattle growth properties and myostatin, GHR and Pit-1 gene. In Animal biotechnology, 33, 536-545. doi:10.1080/10495398.2021.1884566. https://pubmed.ncbi.nlm.nih.gov/33587679/
3. Chatterjee, Sumana, Cottrell, Emily, Rose, Stephen J, Metherell, Louise A, Storr, Hl. 2020. GHR gene transcript heterogeneity may explain phenotypic variability in GHR pseudoexon (6Ψ) patients. In Endocrine connections, 9, 211-22. doi:10.1530/EC-20-0026. https://pubmed.ncbi.nlm.nih.gov/32061156/
4. Stróżewska, Weronika, Durda-Masny, Magdalena, Szwed, Anita. 2022. Mutations in GHR and IGF1R Genes as a Potential Reason for the Lack of Catch-Up Growth in SGA Children. In Genes, 13, . doi:10.3390/genes13050856. https://pubmed.ncbi.nlm.nih.gov/35627241/
5. Yan, Hailong, Yang, Wenjing, Yan, Yuqing, Qu, Lei, Gao, Ye. 2022. Detection of small sequence variations within the goat GHR gene and its effects on growth traits. In Animal biotechnology, 34, 4256-4261. doi:10.1080/10495398.2022.2143791. https://pubmed.ncbi.nlm.nih.gov/36369830/
6. Wang, Chen, He, Xiaowen, Wang, Xinxin, Zhang, Shuxin, Guo, Xingqi. . ghr-miR5272a-mediated regulation of GhMKK6 gene transcription contributes to the immune response in cotton. In Journal of experimental botany, 68, 5895-5906. doi:10.1093/jxb/erx373. https://pubmed.ncbi.nlm.nih.gov/29069454/
7. Akhatayeva, Zhanerke, Li, Haixia, Mao, Cui, Song, Enliang, Zhang, Dongfu. 2020. Detecting novel Indel variants within the GHR gene and their associations with growth traits in Luxi Blackhead sheep. In Animal biotechnology, 33, 214-222. doi:10.1080/10495398.2020.1784184. https://pubmed.ncbi.nlm.nih.gov/32615865/
8. Panaro, Maria Antonietta, Calvello, Rosa, Miniero, Daniela Valeria, Mitolo, Vincenzo, Cianciulli, Antonia. 2022. Imaging Intron Evolution. In Methods and protocols, 5, . doi:10.3390/mps5040053. https://pubmed.ncbi.nlm.nih.gov/35893579/
9. Wei, Taiping, Tang, Ye, Jia, Pei, Li, Yucheng, Wu, Jiahe. 2021. A Cotton Lignin Biosynthesis Gene, GhLAC4, Fine-Tuned by ghr-miR397 Modulates Plant Resistance Against Verticillium dahliae. In Frontiers in plant science, 12, 743795. doi:10.3389/fpls.2021.743795. https://pubmed.ncbi.nlm.nih.gov/34868127/
10. Zhang, Li, Lin, Shudai, An, Lilong, Wang, Zhang, Zhang, Xiquan. . Chicken GHR natural antisense transcript regulates GHR mRNA in LMH cells. In Oncotarget, 7, 73607-73617. doi:10.18632/oncotarget.12437. https://pubmed.ncbi.nlm.nih.gov/27713155/