Ifngr1基因,也称为IFNGR1,编码干扰素-γ受体1(IFN-γR1)。IFN-γR1是IFN-γ受体的配体结合链,与IFN-γ受体2(IFN-γR2)一起形成IFN-γ受体复合物,负责将IFN-γ信号传递到细胞内,启动一系列下游信号通路,如JAK-STAT通路,从而调节免疫细胞的活化和功能。IFN-γ是一种重要的免疫调节因子,在宿主防御病原体感染、免疫监视和炎症反应中发挥着重要作用。
IFNGR1基因的突变会导致IFN-γ信号通路缺陷,从而引起免疫缺陷病,如Mendelian易感性结核病(MSMD)。MSMD是一种罕见的遗传性疾病,患者易感染结核杆菌、非结核分枝杆菌等弱毒力分枝杆菌,以及沙门氏菌、念珠菌等其他病原体。IFNGR1基因突变可导致IFN-γR1蛋白功能缺失或表达降低,使细胞对IFN-γ信号无反应或反应减弱,从而影响免疫细胞的活化和功能,降低宿主对病原体的抵抗力[6]。
近年来,越来越多的研究表明,IFNGR1基因的多态性与多种疾病的易感性相关。例如,IFNGR1基因的rs2234711多态性在非洲人群中与结核病易感性升高相关,而在亚洲人群中与结核病易感性降低相关[1]。IFNGR1基因的rs7749390多态性在非洲人群中与结核病易感性降低相关[1]。此外,IFNGR1基因突变还与自身免疫性疾病、癌症等疾病的发生发展相关。例如,IFNGR1基因突变可能导致肿瘤细胞对免疫治疗的抵抗,降低免疫治疗的疗效[2]。IFNGR1基因突变还可能影响免疫细胞的浸润和免疫代谢,从而参与多种炎症性疾病的发生发展[3]。
IFNGR1基因的突变还会影响皮肤疾病的易感性,例如,IFNGR1基因突变可能导致湿疹患者发生严重的水痘带状疱疹病毒感染,称为湿疹性疱疹[4]。此外,IFNGR1基因突变还可能导致自身免疫性甲状腺疾病的发生发展,如桥本甲状腺炎和格雷夫斯病[5]。
综上所述,IFNGR1基因在免疫系统中发挥着重要作用,其突变可能导致免疫缺陷病,影响多种疾病的易感性。IFNGR1基因的研究有助于深入理解免疫系统的功能和疾病发生机制,为疾病的治疗和预防提供新的思路和策略。
参考文献:
1. Cheng, Liwei, Zhang, Fan, Wang, Ying, Chen, Jing, Yuan, Xiaoping. 2022. Association between IFNGR1 gene polymorphisms and tuberculosis susceptibility: A meta-analysis. In Frontiers in public health, 10, 976221. doi:10.3389/fpubh.2022.976221. https://pubmed.ncbi.nlm.nih.gov/36148347/
2. Du, Wan, Hua, Fang, Li, Xiong, Fang, Jing-Yuan, Zou, Weiping. 2021. Loss of Optineurin Drives Cancer Immune Evasion via Palmitoylation-Dependent IFNGR1 Lysosomal Sorting and Degradation. In Cancer discovery, 11, 1826-1843. doi:10.1158/2159-8290.CD-20-1571. https://pubmed.ncbi.nlm.nih.gov/33627378/
3. Wang, Zhengjian, Liu, Jin, Wang, Yuting, Zhao, Liang, Chen, Hailong. 2023. Identification of Key Biomarkers Associated with Immunogenic Cell Death and Their Regulatory Mechanisms in Severe Acute Pancreatitis Based on WGCNA and Machine Learning. In International journal of molecular sciences, 24, . doi:10.3390/ijms24033033. https://pubmed.ncbi.nlm.nih.gov/36769358/
4. Traidl, Stephan, Roesner, Lennart, Zeitvogel, Jana, Werfel, Thomas. 2021. Eczema herpeticum in atopic dermatitis. In Allergy, 76, 3017-3027. doi:10.1111/all.14853. https://pubmed.ncbi.nlm.nih.gov/33844308/
5. Zheng, Haitao, Xu, Jie, Chu, Yongli, Song, Xicheng, Zhou, Jin. 2022. A Global Regulatory Network for Dysregulated Gene Expression and Abnormal Metabolic Signaling in Immune Cells in the Microenvironment of Graves' Disease and Hashimoto's Thyroiditis. In Frontiers in immunology, 13, 879824. doi:10.3389/fimmu.2022.879824. https://pubmed.ncbi.nlm.nih.gov/35720300/
6. Bustamante, Jacinta, Boisson-Dupuis, Stéphanie, Abel, Laurent, Casanova, Jean-Laurent. 2014. Mendelian susceptibility to mycobacterial disease: genetic, immunological, and clinical features of inborn errors of IFN-γ immunity. In Seminars in immunology, 26, 454-70. doi:10.1016/j.smim.2014.09.008. https://pubmed.ncbi.nlm.nih.gov/25453225/