推荐搜索:
C-NKG
IL10
Apoe
VEGFA
Trp53
ob/ob
Rag1
C57BL/6JCya-Ptbp1em1/Cya 基因敲除小鼠
复苏/繁育服务
产品名称:
Ptbp1-KO
产品编号:
S-KO-03835
品系背景:
C57BL/6JCya
小鼠资源库
* 使用本品系发表的文献需注明:Ptbp1-KO mice (Strain S-KO-03835) were purchased from Cyagen.
交付类型
周龄
性别
基因型
数量
基本信息
品系名称
C57BL/6JCya-Ptbp1em1/Cya
品系编号
KOCMP-19205-Ptbp1-B6J-VA
产品编号
S-KO-03835
基因名
Ptbp1
品系背景
C57BL/6JCya
基因别称
HNRPI; PTB-1; PTB2; PTB3; PTB4; Ptb; pPTB
NCBI号
修饰方式
全身性基因敲除
品系说明
该品系是基于策略设计时的数据库信息制作而成,建议您在购买前查询最新的数据库和相关文献,以获取最准确的表型信息。
小鼠表型
MGI:97791 Mice homozygous for a knock-out allele die before E6.5. Mice homozygous for a conditional allele activated in neuronal stem cells (NSCs) exhibit premature death, and non-obstructive hydrocephaly with loss of ependymal cells due to precocious NSC differentiation.
质控标准
精子检测
① 冷冻前验证精子活力观察
② 冷冻验证每批次进行复苏验证
品系状态
活体
环境标准
SPF
供应地区
中国
品系详情
Ptbp1位于小鼠的10号染色体,采用基因编辑技术,通过应用高通量电转受精卵方式,获得Ptbp1基因敲除小鼠,性成熟后取精子冻存。
Ptbp1-KO小鼠模型是由赛业生物(Cyagen)利用基因编辑技术构建的全身性基因敲除小鼠。该模型构建过程中,赛业生物(Cyagen)选取了Ptbp1基因的3号至8号外显子作为目标区域。Ptbp1基因位于小鼠10号染色体上,共包含14个外显子,其中ATG起始密码子在1号外显子,TAG终止密码子在14号外显子。3号至8号外显子覆盖了55.74%的编码区域,包含928个碱基对的编码序列。 Ptbp1-KO小鼠模型的构建过程包括将核糖核蛋白(RNP)和靶向载体共同注入受精卵。随后,对出生的小鼠进行PCR和测序分析进行基因型鉴定。需要注意的是,对于纯合子敲除等位基因的小鼠,在胚胎发育过程中会因致死效应而死亡。而纯合子条件性等位基因在神经元干细胞(NSCs)中被激活的小鼠,则会出现早死、非阻塞性脑积水以及室管膜细胞丢失等现象,这些现象与神经元干细胞的过早分化有关。 由于敲除等位基因导致胚胎致死性,赛业生物(Cyagen)强烈建议生成条件性敲除模型。条件性敲除模型可以通过与Cre转基因小鼠杂交来获得敲除型。Ptbp1-KO小鼠模型可用于研究Ptbp1基因在小鼠体内的功能,以及探讨其在神经系统和胚胎发育中的重要作用。
基因研究概述
基因PTBP1,全称为polypyrimidine tract binding protein 1,是一种RNA结合蛋白,参与RNA的剪接和转录后修饰。PTBP1在多种生物学过程中发挥作用,包括细胞分化、发育、代谢和疾病发生。
PTBP1在细胞分化中发挥重要作用。研究表明,PTBP1的低水平表达可以促进多种正常人类细胞向功能神经元的转化。此外,PTBP1的敲低可以促进胶质母细胞瘤细胞的神经分化,抑制肿瘤细胞增殖。这表明PTBP1在细胞分化中发挥重要作用,可能成为肿瘤治疗的潜在靶点[1]。
PTBP1还参与RNA的剪接和转录后修饰。PTBP1与hnRNPA1、SRSF1等RNA结合蛋白相互作用,共同调节RNA的剪接和转录后修饰。PTBP1可以与RNA分子形成特定的RNA环,影响RNA的剪接和转录后修饰[2]。此外,PTBP1还可以与PTBP2相互作用,共同调节RNA的剪接和转录后修饰[4]。
PTBP1在多种疾病中发挥重要作用。研究表明,PTBP1的敲低可以抑制衰老细胞的促肿瘤生长作用,防止炎症驱动癌症的发生[3]。此外,PTBP1的敲低还可以促进肠上皮再生,维持肠上皮干细胞的干性[4]。PTBP1的crotonylation还可以促进结直肠癌的进展,通过调节PKM基因的剪接和表达影响肿瘤细胞的糖酵解[5]。
PTBP1还可以影响生物钟基因的翻译。PTBP1可以与Per1基因的5'-UTR结合,促进Per1基因的IRES介导的翻译,从而影响生物钟基因的表达和节律[6]。
PTBP1还可以通过转化星形胶质细胞为神经元来治疗神经退行性疾病。PTBP1的敲低可以促进星形胶质细胞向神经元的转化,重建受损的神经元环路,从而治疗神经退行性疾病,如帕金森病[7]。
综上所述,PTBP1是一种重要的RNA结合蛋白,参与RNA的剪接和转录后修饰,在细胞分化、发育、代谢和疾病发生中发挥重要作用。PTBP1的研究有助于深入理解RNA表观遗传修饰的生物学功能和疾病发生机制,为疾病的治疗和预防提供新的思路和策略。
参考文献:
1. Wang, Kankai, Pan, Sishi, Zhao, Peiqi, Zhuge, Qichuan, Yang, Jianjing. 2022. PTBP1 knockdown promotes neural differentiation of glioblastoma cells through UNC5B receptor. In Theranostics, 12, 3847-3861. doi:10.7150/thno.71100. https://pubmed.ncbi.nlm.nih.gov/35664063/
2. Ye, Rong, Hu, Naijing, Cao, Changchang, Zhou, Xiangtian, Xue, Yuanchao. 2023. Capture RIC-seq reveals positional rules of PTBP1-associated RNA loops in splicing regulation. In Molecular cell, 83, 1311-1327.e7. doi:10.1016/j.molcel.2023.03.001. https://pubmed.ncbi.nlm.nih.gov/36958328/
3. Georgilis, Athena, Klotz, Sabrina, Hanley, Christopher J, Zender, Lars, Gil, Jesús. . PTBP1-Mediated Alternative Splicing Regulates the Inflammatory Secretome and the Pro-tumorigenic Effects of Senescent Cells. In Cancer cell, 34, 85-102.e9. doi:10.1016/j.ccell.2018.06.007. https://pubmed.ncbi.nlm.nih.gov/29990503/
4. Chembazhi, Ullas Valiya, Tung, Wesley S, Hwang, Hyojeong, Kalsotra, Auinash, Mei, Wenyan. . PTBP1 controls intestinal epithelial regeneration through post-transcriptional regulation of gene expression. In Nucleic acids research, 51, 2397-2414. doi:10.1093/nar/gkad042. https://pubmed.ncbi.nlm.nih.gov/36744439/
5. Hou, Jia-Yi, Wang, Xiao-Ling, Chang, Hai-Jiao, Li, Ning, Cao, Ji-Min. 2024. PTBP1 crotonylation promotes colorectal cancer progression through alternative splicing-mediated upregulation of the PKM2 gene. In Journal of translational medicine, 22, 995. doi:10.1186/s12967-024-05793-5. https://pubmed.ncbi.nlm.nih.gov/39497094/
6. Kim, Wanil, Shin, Jae-Cheon, Lee, Kyung-Ha, Kim, Kyong-Tai. 2020. PTBP1 Positively Regulates the Translation of Circadian Clock Gene, Period1. In International journal of molecular sciences, 21, . doi:10.3390/ijms21186921. https://pubmed.ncbi.nlm.nih.gov/32967200/
7. Qian, Hao, Kang, Xinjiang, Hu, Jing, Cleveland, Don W, Fu, Xiang-Dong. 2020. Reversing a model of Parkinson's disease with in situ converted nigral neurons. In Nature, 582, 550-556. doi:10.1038/s41586-020-2388-4. https://pubmed.ncbi.nlm.nih.gov/32581380/